SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY:: PUTTUR
Siddharth Nagar, Narayanavanam Road - 517583
DEPARTMENT OF ELECTRONICS \& COMMUNICATON ENGINEERING
Subject with Code :STLD (19EC0401)
Course \& Branch: B.Tech - ECE
Year \& Sem: I B.Tech \& II Sem
Regulation: R19

UNIT -I

Binary Systems, Boolean Algebra And Logic Gates

1. Convert the given decimal number 234 to binary, quaternary, octal, hexadecimal and $B C D$ equivalent.
2. Convert the following to Decimal and then to Octal
i) 1234_{16}
ii) $12 \mathrm{EF}_{16}$
iii) 10110011_{2}
iv) 352_{6}
v) 999_{16}
3. How are negative numbers represented? Represent signed numbers from +7 to -8 using different ways of representation.

12M
4. a) Obtain the truth table for the Boolean function, $\mathrm{F}=(\mathrm{A}+\mathrm{B})(\mathrm{B}+\mathrm{C})$ and express the function as sum of minterms and product of maxterms.

6M
b) Simplify the following Boolean functions to minimum number of literals $\quad \mathbf{6 M}$
i) $X Y Z+X^{\prime} Y+X Y Z '$.
ii) $X Z+X^{\prime} Y Z$.
5. a) Simplify the following Boolean expressions to minimum no. of literals. 6M
i) $A B C+A^{\prime} B+A B C{ }^{\prime}$
ii) $\left(\mathrm{BC}^{\prime}+\mathrm{A}^{\prime} \mathrm{D}\right)\left(\mathrm{AB}^{\prime}+\mathrm{CD}^{\prime}\right)$
b) Perform the following 6M
i) Subtraction by using 10's complement for the given 3456-245.
ii) Subtraction by using 2's complement for the given 111001-1010.
6. a) With an example, explain in detail about the different types of binary codes 8M
b) Convert the following to Decimal and then to Hexadecimal. 4M
i) $(1234)_{8}$
ii) $(11001111)_{2}$
7. a) Obtain the Dual of the following Boolean expressions.
i) $A B+A(B+C)+B^{\prime}(B+D)$
ii) $A+B+A^{\prime} B{ }^{\prime} C$
iii) $\mathrm{A}^{\prime} \mathrm{B}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{A}^{\prime} \mathrm{BCD}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D}^{\prime} \mathrm{E}$
iv) $A B E F+A B E^{\prime} F^{\prime}+A^{\prime} B^{\prime} E F$
b) Simplify the expression $\mathrm{XY}+\mathrm{X}^{\prime} \mathrm{Z}+\mathrm{YZ}$ in to minimum literals. 2M
c) Convert the $\mathrm{A}+\mathrm{BC}$ into canonical form. 2M
8. a) Determine the canonical product-of-sums representation of the following functions
i) $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{C}\left(\mathrm{A}^{\prime}+\mathrm{B}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right) \quad$ ii) $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{A}\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{C}^{\prime}\right)$ 6M
b) Perform the following using $B C D$ arithmetic $\quad \mathbf{6 M}$
i) $(79)_{10}+(177)_{10}$
ii) $(481)_{10}+(178)_{10}$
$\begin{array}{ll}\text { 9.a) Discuss about the laws of Boolean algebra. } & \mathbf{9 M}\end{array}$
b) Why NAND and NOR gate is called as universal gate $\quad \mathbf{3 M}$
10. a) State De Morgan's theorem and Duality. List Boolean laws and their Duals. $\quad \mathbf{8 M}$
b) Give the truth table of logic gates. $\quad \mathbf{4 M}$
$\begin{array}{ll}\text { 11.a) Brief about the Digital Logic Gates } & \mathbf{8 M}\end{array}$
b) Discuss about Integrated circuits. $\quad \mathbf{4 M}$

UNIT -II

Gate Level Minimization

1. Simplify the following expression using the K-map $F(A, B, C, D)=\Sigma(1,2,3,4,5,7,9,11,12,13,14)$ and implement using basic gates
2. a) Minimize the following Boolean function using K-Map 6M

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,2,4,6,8,10,12,14) .
$$

b) Realize it using NAND Gates.
3. Simplify the following Boolean function using K map: $F(A, B, C, D)=\Sigma(2,4,6,10,12)$; $\mathrm{d}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(0,8,9,13)$ and realize it using basic gates
4. a) Simplify the following expression using the K -map for the 3 -variable.

$$
\mathrm{Y}=\mathrm{AB} \mathrm{~B}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}
$$

5. Simplify the expression using K-map for the following Boolean function and implement using two-level logic minimization $\quad \mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\sum(0,1,4,5,16,17,21,25,29)$
6. a) Implement the following Boolean function using NOR gates $\mathrm{Y}=\left(\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{B}\right)\left(\mathrm{C}+\mathrm{D}^{\prime}\right)$.
b) Implement the following function using only NAND gates $\mathrm{G}=(\mathrm{A}+\mathrm{B}) .(\mathrm{C} . \mathrm{D}+\mathrm{E})$ 6M
7.. Simplify the following Boolean expressions using K-map.

$$
\mathrm{F}(\mathrm{~W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{XZ}+\mathrm{W}^{\prime} \mathrm{XY} \mathrm{Y}^{\prime}+\mathrm{WXY}+\mathrm{W}^{\prime} \mathrm{YZ}+\mathrm{W}^{\prime} \mathrm{Z}
$$

8. Simplify the following Boolean function in POS form using K-map and implement using basic gates

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\pi_{\mathrm{M}}(1,2,4,5,9,12,13,14) \quad \mathbf{1 2 M}
$$

9. Simplify the following Boolean function using Tabulation method $\quad \mathbf{1 2 M}$ $\mathrm{Y}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,5,8,9,11,15)$
10. Simplify the following Boolean function, $f(W, X, Y, Z)=\sum m(2,6,8,9,10,11,14,15)$ using QuineMcClukey tabular method

12M
11.Simplifying the following expression using tabulation technique.

12M

$$
\mathrm{F}=\Sigma \mathrm{m}(0,1,2,8,9,15,17,21,24,25,27,31)
$$

UNIT -III

Combinational Logic Circuits

1. With an example, illustrate the analysis procedure of combinational circuits. 12M
2.a) Brief about the Step by step methods to design a Combinational Circuits. 6M
b) Design \& implement half Adder with truth table. 6M
2. a) Design \& implement Full Adder with truth table. 6M
b) Design \& implement Full Subtractor with truth table. 6M
3. a) Design \& implement the 4 bit binary Adder. 6M
b) Design \& implement half Subtractor with truth table. 6M
5.a) Design \& implement a 4-bit Binary-to-Gray code converter. 6M
b) Design a 4 bit binary-to-BCD code converter 6M
4. a) a) Implement the following Boolean function using $8: 1$ multiplexer. 6M
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{A}^{\prime} \mathrm{BD}{ }^{\prime}+\mathrm{ACD}+\mathrm{B}^{\prime} \mathrm{CD}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}$
b) What is multiplexer? Construct $4^{*} 1$ multiplexer with logic gates and truth table 6M
5. Explain Carry Look Ahead Adder circuit with the help of logic diagram. 12M
6. a) Construct a BCD Adder-circuit. 5M
b) Discuss in detail about serial adder with diagram 7M
7. Implement 4-bit Magnitude Comparator and write down its design procedure. 12M
8. a) Design \& implement Full Adder using Decoder. 5M
b) Implement a 2-bit Magnitude comparator 7M
9. a)What is encoder? Design octal to binary encoder. 7M
b) Design a 1:4 Demultiplexer and mention the applications of a DEMUX. 5M

UNIT -IV

Sequential Logic Circuits

1. a) Design D Flip Flop by using SR Flip Flop and draw the timing diagram. $\mathbf{6 M}$
b) Write the differences between combinational and sequential circuits.
2. a) Draw the logic symbol, characteristics table and derive characteristics equation of JK flip flop.
b) Design T Flip Flop by using JK Flip Flop and draw the timing diagram. $\quad \mathbf{6 M}$
3. a). With logic diagram and timing diagram discuss about SR Flip Flop. 12M
4. a) Convert S-R flip flop into JK-flip flop. Draw and explain the logic diagram. $\mathbf{6 M}$
b) Draw the circuit of JK flip flop using NAND gates and explain its operation $\mathbf{6 M}$
5. Explain about state table, state diagram and state assignment techniques with an example.

12M
6. Design and implement 3-bit ripple counter using J-K flip flop. Draw the timing diagram. 12M
7. With a neat sketch explain MOD 6 Johnson counter using D FF. IES 2015 12M
8. Explain about different types of shift registers. Briefly describe its operation. $\mathbf{1 2 M}$
9. What are the different types of counters .Explain briefly. 12M
10.a) Write the difference between Latch and Flip flop $\quad \mathbf{2 M}$
b) List asynchronous inputs of a sequential device $\quad \mathbf{2 M}$
c) Draw the block diagram of sequential circuit using combinational circuit and memory unit. 2M
d) Draw the logic circuit of flip-flop and truth table using NOR gates. $\quad \mathbf{2 M}$
e) Give the comparison between combinational circuits and sequential circuits. $\quad \mathbf{2 M}$
f) What is the advantage of choosing D flip flop in sequential circuits $\quad \mathbf{2 M}$

UNIT -V

Finite State Machines and Programmable Memories

1. Explain different types of memory devices.

12M
2. Realize $\mathrm{F}=\Sigma \mathrm{m}(0,2,3,7,9,11,15,16)$ using ROM $\mathbf{1 2 M}$
3. Implement the following Boolean function using PLA 12M
(i) $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(0,1,3,5,9,13)$
(ii) $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}))=\Sigma \mathrm{m}(0,2,4,5,7,9,11,15)$
4. Implement the following Boolean function usingPAL.
(i) $\mathrm{A}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(0,2,6,7,8,9,12,13) \quad$ (ii) $\mathrm{B}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}))=\Sigma \mathrm{m}(0,2,6,7,8,9,12,13,14)$
(iii) $\mathrm{C}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(1,3,4,6,10,12,13) \quad$ (iv) $\mathrm{D}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}))=\Sigma \mathrm{m}(1,3,4,6,9,12,14)$
5. Explain in detail about Content Addressable memory structure and its function.
6. Implement the following Boolean function usingPLA 12M
(i) $\mathrm{F} 1=\Sigma \mathrm{m}(0,1,2,3,8,10,12,14)$
(ii) $\mathrm{F} 2=\Sigma \mathrm{m}(0,1,2,3,4,6,8,10,12,14)$.
7. a) How does the PLDs differ from fixed logic devices? What are the primary advantages of using PLDs.
b) Implement PLA circuit for the following functions $\mathrm{F} 1(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(3,5,6,7)$,

$$
\mathrm{F} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(0,2,4,7) .
$$

8. Differentiate among ROM, PROM, DROM, EPROM, EEPROM, RAM. 12M
9. Give the logic implementation of a 32×4 bit ROM using a decoder of a suitable figure. 12M
10. Draw the diagram of melay type FSM for serial adder.. $\mathbf{1 2 M}$
11. a) Give the classification of semiconductor memories. $\quad \mathbf{2 M}$
b) Draw a simple memory with necessary signals. $\quad \mathbf{2 M}$
c) What are the advantages of flash memory? $\quad \mathbf{2 M}$
d) What is the concept of CCD? $\quad \mathbf{2 M}$
e) Compare PAL, PLA \& ROM $\quad \mathbf{2 M}$
f) Distinguish between melay \& moore machines. $\quad \mathbf{2 M}$
