Switching Theory and Logic Design

QUESTION BANK	2019
QUESTION DIMM	2017

SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOG Siddharth Nagar, Narayanavanam Road – 517583 DEPARTMENT OF ELECTRONICS & COMMUNICATON E	Y:: PUTTUR
Subject with Code :STLD (19EC0401)Course	& Branch: B.Tech - ECE
Year & Sem: I B.Tech & II SemRegulat	ion: R19
UNIT –I	
Binary Systems, Boolean Algebra And Logic Gate	s
1. Convert the given decimal number 234 to binary, quaternary, octal, hexadecim	al and BCD equivalent.
	12M
2. Convert the following to Decimal and then to Octal	12M
i) 123416 ii) 12EF16 iii) 101100112 iv) 3526 v) 99916	
3. How are negative numbers represented? Represent signed numbers from +7 to of representation.	-8 using different ways 12M
4. a) Obtain the truth table for the Boolean function, $F = (A+B) (B+C)$ and expre	ss the function as sum
of minterms and product of maxterms.	6 M
b) Simplify the following Boolean functions to minimum number of literals	6M
1) $XYZ + X'Y + XYZ'$. 1) $XZ + X'YZ$. 5. a) Simultified the following Deplementation of the main improvement of the main interval X .	(M
5. a) Simplify the following Boolean expressions to minimum no. of literals. i) $APC+A'P+APC'$:::) $(PC'+A'D)(AP'+CD')$	OIVI
b) Perform the following $(BC + A D)(AB + CD)$	6M
i) Subtraction by using 10's complement for the given 3456 - 245.	01/1
ii) Subtraction by using 2's complement for the given 111001-1010.	
6. a) With an example, explain in detail about the different types of binary codes	. 8 M
b) Convert the following to Decimal and then to Hexadecimal.	4 M
i) (1234) ₈ ii) (11001111) ₂	
7. a) Obtain the Dual of the following Boolean expressions.	8M
i) $AB+A(B+C)+B'(B+D)$ ii) $A+B+A'B'C$	
iii) A'B+A'BC'+A'BCD+A'BC'D'E iv) ABEF+ABE'F'+A'B	'EF
b) Simplify the expression $XY+X'Z+YZ$ in to minimum literals.	2M
c) Convert the A+BC into canonical form.	2M
8. a) Determine the canonical product-of-sums representation of the following tu (A + D) $(A + D)$	nctions
1) $I(A,B,C) = C(A^{+}+B)(A+B^{+})$ 11) $I(A,B,C) = A(A^{+}+B^{+})(A^{+}+C^{+})$ b) Derform the following using DCD orithmetic	0IVI GM
i) $(79)_{10} + (177)_{10}$ ii) $(481)_{10} + (178)_{10}$	0171
9 a) Discuss about the laws of Boolean algebra	9M
b) Why NAND and NOR gate is called as universal gate	3M
10. a) State De Morgan's theorem and Duality. List Boolean laws and their Duals	S. 8M
b) Give the truth table of logic gates.	4 M
11.a) Brief about the Digital Logic Gates	8M
b) Discuss about Integrated circuits.	4M

<u>UNIT –II</u>

Gate Level Minimization

1. Simplify the following expression using the K-map $F(A,B,C,D) = \Sigma(1,2,3,4,5,7,9,11,12,12,12,12,12,12,12,12,12,12,12,12,$	(3, 14) and
implement using basic gates	12M
2. a) Minimize the following Boolean function using K-Map	6M
$F(A, B, C, D) = \Sigma m(0, 2, 4, 6, 8, 10, 12, 14).$	
b) Realize it using NAND Gates.	6M
3. Simplify the following Boolean function using K map: $F(A, B, C, D)=\Sigma(2, 4, 6, 10, 12);$	
$d(A, B, C, D) = \Sigma(0, 8, 9, 13)$ and realize it using basic gates	12M
4. a) Simplify the following expression using the K-map for the 3-variable.	
Y = AB'C+A'BC+A'B'C+A'B'C'+AB'C'	6M
b) Simplify the Boolean function $F(A,B,C,D) = \sum (1,3,7,11,15) + d(0,2,5)$	6M
5. Simplify the expression using K-map for the following Boolean function and implement	using
two-level logic minimization $F(A, B, C, D, E) = \sum (0, 1, 4, 5, 16, 17, 21, 25, 29)$	12M
6. a) Implement the following Boolean function using NOR gates $Y=(AB'+A'B)(C+D')$.	6M
b) Implement the following function using only NAND gates $G=(A + B).(C. D + E)$	6M
7 Simplify the following Boolean expressions using K-map.	12M
F(W,X,Y,Z) = XZ + W'XY' + WXY + W'YZ + WY'Z	
8. Simplify the following Boolean function in POS form using K-map and implement using	basic gates
$F(A,B,C,D) = \pi_{M}(1,2,4,5,9,12,13,14)$	12M
9. Simplify the following Boolean function using Tabulation method	12M
$Y(A,B,C,D) = \Sigma(1,3,5,8,9,11,15)$	
10. Simplify the following Boolean function, $f(W,X,Y,Z)=\sum m(2,6,8,9,10,11,14,15)$ using Q	Quine-
McClukey tabular method	12M
11. Simplifying the following expression using tabulation technique.	12M
$F=\Sigma m(0,1,2,8,9,15,17,21,24,25,27,31)$	

UNIT –III

Combinational Logic Circuits

1. With an example, illustrate the analysis procedure of combinational circuits.	12M
2.a) Brief about the Step by step methods to design a Combinational Circuits.	6 M
b) Design & implement half Adder with truth table.	6M
3. a) Design & implement Full Adder with truth table.	6M
b) Design & implement Full Subtractor with truth table.	6M
4. a) Design & implement the 4 bit binary Adder.	6M
b) Design & implement half Subtractor with truth table.	6M
5.a) Design & implement a 4-bit Binary-to-Gray code converter.	6M
b) Design a 4 bit binary-to-BCD code converter	6M
6. a) a) Implement the following Boolean function using 8:1 multiplexer.	6M
F(A,B,C,D) = A'BD' + ACD + B'CD + A'C'D.	
b) What is multiplexer? Construct 4*1 multiplexer with logic gates and truth table	6M
7. Explain Carry Look Ahead Adder circuit with the help of logic diagram.	12M
8. a) Construct a BCD Adder-circuit.	5 M
b) Discuss in detail about serial adder with diagram	7M
9. Implement 4-bit Magnitude Comparator and write down its design procedure.	12M
10. a) Design & implement Full Adder using Decoder.	5 M
b) Implement a 2-bit Magnitude comparator.	7 M
11. a)What is encoder? Design octal to binary encoder.	7 M
b) Design a 1:4 Demultiplexer and mention the applications of a DEMUX.	5M

QUESTION BANK 2019

<u>UNIT –IV</u>

Sequential Logic Circuits

1.	a) Design D Flip Flop by using SR Flip Flop and draw the timing diagram.b) Write the differences between combinational and sequential circuits.	6M 6M
2.	a) Draw the logic symbol, characteristics table and derive characteristics equation of	JK flip flop.
		6M
	b) Design T Flip Flop by using JK Flip Flop and draw the timing diagram.	6M
3.	a). With logic diagram and timing diagram discuss about SR Flip Flop.	12M
4.	a) Convert S-R flip flop into JK-flip flop. Draw and explain the logic diagram.	6M
	b) Draw the circuit of JK flip flop using NAND gates and explain its operation	6M
5.	5. Explain about state table, state diagram and state assignment techniques with an example.	
	12M	-
6.	6. Design and implement 3-bit ripple counter using J-K flip flop. Draw the timing diagram. 12M	
7.	With a neat sketch explain MOD 6 Johnson counter using D FF. IES 2015	12M
8.	Explain about different types of shift registers. Briefly describe its operation.	12M
9.	What are the different types of counters .Explain briefly.	12M
10	a) Write the difference between Latch and Flip flop	2M
	b) List asynchronous inputs of a sequential device	2M
	c) Draw the block diagram of sequential circuit using combinational circuit and memo	ry unit. 2M
	d) Draw the logic circuit of flip-flop and truth table using NOR gates.	2M
	e) Give the comparison between combinational circuits and sequential circuits.	2M
	f) What is the advantage of choosing D flip flop in sequential circuits	2M

<u>UNIT –V</u> <u>Finite State Machines and Programmable Memories</u>

1.	Explain different types of memory devices.	12M
2.	Realize $F = \Sigma m(0,2,3,7,9,11,15,16)$ using ROM	12M
3.	Implement the following Boolean function using PLA	12M
	(i) $F(w,x,y,z) = \Sigma m(0,1,3,5,9,13)$ (ii) $F(w,x,y,z) = \Sigma m(0,2,4,5,7,9,11,15)$	
4.	Implement the following Boolean function using PAL.	12M
	(i)A(w,x,y,z) = $\Sigma m(0,2,6,7,8,9,12,13)$ (ii)B(w,x,y,z)) = $\Sigma m(0,2,6,7,8,9,12,13,14)$	4)
	(iii) $C(w,x,y,z) = \Sigma m(1,3,4,6,10,12,13)$ (iv) $D(w,x,y,z) = \Sigma m(1,3,4,6,9,12,14)$	
5.	Explain in detail about Content Addressable memory structure and its function.	12M
6.	Implement the following Boolean function usingPLA	12M
	(i)F1= Σ m(0,1,2,3,8,10,12,14) (ii)F2 = Σ m(0,1,2,3,4,6,8,10,12,14).	
7.	a) How does the PLDs differ from fixed logic devices? What are the primary advantage	ges of using
	PLDs.	6M
	b) Implement PLA circuit for the following functions $F1(A,B,C) = \Sigma m(3,5,6,7)$,	
	$F2(A,B,C) = \Sigma m(0,2,4,7).$	6M
8.	Differentiate among ROM, PROM, DROM, EPROM, EEPROM, RAM.	12M
9.	Give the logic implementation of a 32x4 bit ROM using a decoder of a suitable figure	. 12M
10.	Draw the diagram of melay type FSM for serial adder.	12M
11.	a) Give the classification of semiconductor memories.	2M
	b) Draw a simple memory with necessary signals.	2M
	c) What are the advantages of flash memory?	2M
	d) What is the concept of CCD?	2M
	e) Compare PAL, PLA & ROM	2M
	f) Distinguish between melay & moore machines	2M
	ry Distinguish set wer mony of moore machines.	